
BackTrade

Professional Trading Backtesting Platform

TypeScriptTypeScript

ReactReact

Node.jsNode.js

DockerDocker

pnpmpnpm

A deterministic multi-session historical trading simulator for professional traders and quantitative analysts

Table of Contents
Overview

Features

Architecture

Technology Stack

Prerequisites

Quick Start

Development

Production Deployment

Configuration

Project Structure

Available Scripts

Testing

License

Contact

No. 1 / 10 - README - REICHHART Damien - 2026-01-18

No. 1 / 10 - README - REICHHART Damien - 2026-01-18

af://n0
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://reactjs.org/
https://reactjs.org/
https://nodejs.org/
https://nodejs.org/
https://www.docker.com/
https://www.docker.com/
https://pnpm.io/
https://pnpm.io/
af://n9
af://n40

Overview
BackTrade is a sophisticated trading backtesting platform designed for professional traders and quantitative
analysts. The platform provides a deterministic environment where users can launch trading sessions at any
historical timestamp, execute trades as if operating in real-time during past market conditions, and access
detailed performance analytics.

Core Capabilities

Historical Trading Simulation: Launch trading sessions at any historical timestamp with full market
data replay

Multi-Session Management: Run multiple concurrent trading sessions with different instruments and
parameters

Real-Time Controls: Interactive time controls with play/pause functionality and variable speed settings
(0.5x, 1x, 2x, 5x, 10x)

Advanced Analytics: Comprehensive trading performance metrics and detailed session analytics

Professional Tools: Position management, risk controls, and sophisticated order execution

Subscription Tiers: Role-based access control with tiered subscription system

Features

Trading Features

Multi-Session Management: Run multiple concurrent trading sessions with different instruments

Real-Time Simulation: Interactive time controls with play/pause and variable speed settings -Position
Management: Open, modify, and close positions with real-time P&L tracking

Advanced Analytics: Comprehensive trading performance metrics and session analytics

Multiple Instruments: Support for various trading instruments (XAUUSD, EURUSD, etc.) and
timeframes

Historical Data: Full historical candlestick data stored in ClickHouse for fast retrieval

Platform Features

User Authentication: Secure JWT-based authentication with refresh tokens

Role-Based Access Control: Tiered subscription system (User, Trader, Expert, Admin)

Subscription Management: Stripe integration for payment processing and subscription management

Dataset Management: Upload, process, and manage trading datasets

Email Notifications: Automated email notifications for account events

Modern UI: Intuitive React-based interface with interactive candlestick charts

Background Processing: Asynchronous job processing with RabbitMQ

Object Storage: MinIO integration for dataset file storage

Caching Layer: Redis-based caching for improved performance

No. 2 / 10 - README - REICHHART Damien - 2026-01-18

No. 2 / 10 - README - REICHHART Damien - 2026-01-18

af://n40
af://n42
af://n57
af://n58
af://n70

Service Description Port (Dev)

Frontend React web application served by Nginx 5173

Backend API Express.js REST API server 21799

Worker Background job processor for async tasks -

Scheduler Scheduled tasks and queue retry handler -

PostgreSQL Primary relational database 5432

Redis Caching and session storage 6379

ClickHouse Analytics database for time-series data 8123, 9002

MinIO Object storage for datasets 9000, 9001

RabbitMQ Message queue for job processing 5672, 15672

Nginx Reverse proxy (production only) 80

Cloudflare Tunnel Secure remote access (production only) -

Infrastructure Features

Microservices Architecture: Separate services for API, Worker, and Scheduler

Database Migrations: Automated Prisma migrations with health checks

Queue Retry System: Automatic retry mechanism for failed jobs

Health Monitoring: Comprehensive health checks for all services

Security Hardening: Non-root containers, capability dropping, and security best practices

Cloudflare Tunnel: Secure remote access without exposing ports

Architecture
BackTrade is built as a modern, scalable monorepo using pnpm workspaces and Turbo for efficient build
orchestration.

Services

The platform consists of the following services:

Network Architecture

The production environment uses three isolated Docker networks:

Backend Network (192.168.250.0/24): Database, cache, storage, and message queue services

Frontend Network (192.168.251.0/24): Frontend and backend API communication

Public Network (192.168.252.0/24): Proxy and tunnel services

No. 3 / 10 - README - REICHHART Damien - 2026-01-18

No. 3 / 10 - README - REICHHART Damien - 2026-01-18

af://n90
af://n105
af://n107
af://n158
af://n168

Technology Stack

Frontend

React - Modern UI framework

TypeScript - Type-safe development

Vite - Fast development and optimized production builds

React Router - Client-side routing

React Query - Server state management and data fetching

Zustand - Lightweight client state management

Lightweight Charts - High-performance candlestick visualization

Zod - Schema validation and type inference

Jest - Testing framework

Backend

Node.js with Express - High-performance API server

TypeScript - Type-safe backend development

Prisma - Modern database ORM with type safety

PostgreSQL - Robust relational database

ClickHouse - Analytics database for time-series data

Redis (ioredis) - High-performance caching layer

RabbitMQ - Message queue for asynchronous processing

MinIO - S3-compatible object storage

Zod - Request/response validation

Pino - Structured logging

Argon2 - Secure password hashing

Helmet - Security headers

CORS - Cross-origin resource sharing

Stripe - Payment processing

Prerequisites
Before you begin, ensure you have the following installed:

Node.js (LTS version recommended)

pnpm (version 10.20.0 or later)

Docker (version 20.10 or later)

Docker Compose (version 2.0 or later)

Git

No. 4 / 10 - README - REICHHART Damien - 2026-01-18

No. 4 / 10 - README - REICHHART Damien - 2026-01-18

af://n168
af://n169
af://n189
af://n219

Verify Installation

Quick Start

1. Clone the Repository

2. Install Dependencies

3. Configure Environment Variables

The project requires environment configuration files:

Root Environment File

Create .env in the root directory (for Docker services):

4. Start Development Environment

Option A: Using Docker Compose (Recommended)

Start all services:

Initialize the database (run migrations and seed data):

Or use the Makefile:

node --version # Should be LTS version

pnpm --version # Should be 10.20.0 or later

docker --version # Should be 20.10+

docker compose version # Should be 2.0+

git clone https://github.com/DamienReichhart/BackTrade.git

cd BackTrade

pnpm install

Copy from example (if available) or create manually

cp .env.example .env

cp .env.example apps/api/.env

cp .env.example apps/worker/.env

cp .env.example apps/scheduler/.env

docker compose -f docker-dev.yaml up -d

docker compose -f docker-dev.yaml exec dev pnpm --filter @backtrade/data prisma:init

make setup # Installs dependencies, builds, starts dev, and initializes database

No. 5 / 10 - README - REICHHART Damien - 2026-01-18

No. 5 / 10 - README - REICHHART Damien - 2026-01-18

af://n232
af://n235
af://n236
af://n238
af://n240
af://n242
af://n245
af://n246

5. Access the Application

Once all services are running:

Frontend: http://localhost:5173

API: http://localhost:21799

API Health Check: http://localhost:21799/api/v1/health

RabbitMQ Management: http://localhost:15672

MinIO Console: http://localhost:9001

Development

Development Workflow

1. Start Development Environment

2. Access Development Container

3. Run Database Migrations

4. View Logs

Code Quality

The project enforces high code quality standards:

ESLint - Code linting and style enforcement

TypeScript - Static type checking

Prettier - Code formatting

Jest - Comprehensive test coverage

Pre-Commit Hooks - Automated quality checks

Git Commit Standards

All commits must follow the Conventional Commits specification with required type and scope. See
documentation/git-commit-standards.md for details.

make dev

make dev-shell

make db-migrate

make dev-logs

No. 6 / 10 - README - REICHHART Damien - 2026-01-18

No. 6 / 10 - README - REICHHART Damien - 2026-01-18

af://n253
http://localhost:5173/
http://localhost:21799/
http://localhost:21799/api/v1/health
http://localhost:15672/
http://localhost:9001/
af://n267
af://n268
af://n282
af://n295
https://www.conventionalcommits.org/

Makefile Commands

The project includes a comprehensive Makefile for common operations:

Development

Database Management

Code Quality

Build & Start

Cleanup

make dev # Start development environment

make dev-build # Build and start development environment

make dev-stop # Stop development environment

make dev-down # Stop and remove development containers

make dev-logs # View development environment logs

make dev-shell # Open shell in development container

make dev-restart # Restart development environment

make db-init # Initialize database (generate, deploy migrations, and seed)

make db-generate # Generate Prisma client

make db-migrate # Run Prisma migrations

make db-deploy # Deploy Prisma migrations (production mode)

make db-seed # Seed database with initial data

make db-studio # Open Prisma Studio (database GUI)

make lint # Run ESLint on all packages

make typecheck # Run TypeScript type checking

make format # Format code with Prettier

make format-check # Check code formatting

make test # Run all tests

make test-coverage # Run tests with coverage report

make quality # Run all code quality checks (lint + typecheck + format-check)

make build # Build all packages and applications

make start # Start all build services (non-docker)

make clean # Clean build artifacts and node_modules

make clean-all # Clean everything including Docker volumes

make prune # Remove unused Docker resources

No. 7 / 10 - README - REICHHART Damien - 2026-01-18

No. 7 / 10 - README - REICHHART Damien - 2026-01-18

af://n297
af://n299
af://n301
af://n303
af://n305
af://n307
af://n310

Production Deployment

Prerequisites

All environment variables configured (see Configuration)

Docker and Docker Compose installed

Sufficient system resources (see resource limits in docker-prod.yaml)

Deployment Steps

1. Configure Environment Variables

Ensure all required environment variables are set in the root .env file.

2. Build and Start Services

Or using Makefile:

3. Verify Services

Check service health:

4. Access the Application

If using Cloudflare Tunnel: Access via your configured tunnel URL

If testing locally: http://localhost (port 80)

Production Services

The production stack includes:

Frontend: React application served by Nginx (distroless image)

Backend: Express.js API server with health checks

Worker: Background job processor for async tasks

Scheduler: Scheduled tasks and queue retry handler

Migrate: Database migration service (runs once on startup)

PostgreSQL: Primary database with persistent storage

Redis: Caching layer with persistent storage

ClickHouse: Analytics database with persistent storage

MinIO: Object storage with persistent storage

RabbitMQ: Message queue with persistent storage

docker compose -f docker-prod.yaml up -d --build

make prod-build

docker compose -f docker-prod.yaml ps

docker compose -f docker-prod.yaml logs -f

No. 8 / 10 - README - REICHHART Damien - 2026-01-18

No. 8 / 10 - README - REICHHART Damien - 2026-01-18

af://n310
af://n311
af://n319
http://localhost/
af://n340

Proxy: Nginx reverse proxy

Cloudflare Tunnel: Secure remote access

Production Makefile Commands

Project Structure

Available Scripts

Root Scripts

make prod # Start production environment

make prod-build # Build and start production environment

make prod-stop # Stop production environment

make prod-down # Stop and remove production containers

make prod-logs # View production environment logs

make prod-restart # Restart production environment

BackTrade/

├── apps/

│ ├── api/ # Express.js backend API

│ ├── web/ # React frontend application

│ ├── worker/ # Background job processor

│ └── scheduler/ # Scheduled tasks service

├── packages/

│ ├── datas/ # Data access layer (Prisma, ClickHouse, repositories)

│ ├── types/ # Shared TypeScript types and Zod schemas

│ ├── utils/ # Shared utility functions

│ ├── cache/ # Redis caching layer

│ ├── queue/ # RabbitMQ integration

│ ├── storage/ # MinIO object storage integration

│ ├── mailer/ # Email service

│ ├── logger/ # Structured logging

│ ├── eslint-config/ # Shared ESLint configuration

│ └── tsconfig/ # Shared TypeScript configuration

├── docker/

│ ├── images/ # Dockerfile definitions

│ └── config/ # Service configuration files

├── k8s/ # Kubernetes deployment manifests

├── documentation/ # Project documentation

└── assets/ # Brand assets and logos

pnpm dev # Start all services in development mode

pnpm build # Build all packages and applications

pnpm start # Start all build services

pnpm typecheck # Type check all packages

pnpm lint # Lint all packages

pnpm test # Run all tests

pnpm test:coverage # Run tests with coverage report

pnpm format # Format code with Prettier

No. 9 / 10 - README - REICHHART Damien - 2026-01-18

No. 9 / 10 - README - REICHHART Damien - 2026-01-18

af://n367
af://n369
af://n371
af://n372

Package-Specific Scripts

Each package and app has its own scripts defined in its package.json . Use Turbo filters to run scripts in
specific packages:

Testing

Run Tests

License
This project is licensed under a Proprietary License. See the LICENSE file for details.

Important: This is a read-only license. No execution, copying, or distribution rights are granted.

Contact
REICHHART Damien

Email: contact@damien-reichhart.fr

Project: BackTrade Trading Platform

Built with ❤️ for the trading community

Report Bug •
Request Feature •
Documentation

pnpm format:check # Check code formatting

pnpm --filter @backtrade/api <script>

pnpm --filter @backtrade/web <script>

pnpm --filter @backtrade/data <script>

Run all tests

pnpm test

Run tests in watch mode

pnpm test:watch

Run tests with coverage report

pnpm test:coverage

No. 10 / 10 - README - REICHHART Damien - 2026-01-18

No. 10 / 10 - README - REICHHART Damien - 2026-01-18

af://n374
af://n378
af://n379
af://n382
file:///D:/Downloads/BackTrade/LICENSE
af://n386
mailto:contact@damien-reichhart.fr
mailto:contact@damien-reichhart.fr
mailto:contact@damien-reichhart.fr
file:///D:/Downloads/BackTrade/documentation

	BackTrade
	Table of Contents
	Overview
	Core Capabilities

	Features
	Trading Features
	Platform Features
	Infrastructure Features

	Architecture
	Services
	Network Architecture

	Technology Stack
	Frontend
	Backend

	Prerequisites
	Verify Installation

	Quick Start
	1. Clone the Repository
	2. Install Dependencies
	3. Configure Environment Variables
	Root Environment File

	4. Start Development Environment
	Option A: Using Docker Compose (Recommended)

	5. Access the Application

	Development
	Development Workflow
	Code Quality
	Git Commit Standards
	Makefile Commands
	Development
	Database Management
	Code Quality
	Build & Start
	Cleanup

	Production Deployment
	Prerequisites
	Deployment Steps
	Production Services
	Production Makefile Commands

	Project Structure
	Available Scripts
	Root Scripts
	Package-Specific Scripts

	Testing
	Run Tests

	License
	Contact

