No. 1/ 10 - README - REICHHART Damien - 2026-01-18

BackTrade

Professional Trading Backtesting Platform

TypeScript

A deterministic multi-session historical trading simulator for professional traders and quantitative analysts

Table of Contents

e Qverview
e Features
e Architecture

e Technology Stack

® Prerequisites
e Quick Start
e Development

e Production Deployment

e Configuration

e Project Structure

e Available Scripts

e Testing
e license

e (Contact

No. 1/10 - README - REICHHART Damien - 2026-01-18

af://n0
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://reactjs.org/
https://reactjs.org/
https://nodejs.org/
https://nodejs.org/
https://www.docker.com/
https://www.docker.com/
https://pnpm.io/
https://pnpm.io/
af://n9
af://n40

No. 2 /10 - README - REICHHART Damien - 2026-01-18

Overview

BackTrade is a sophisticated trading backtesting platform designed for professional traders and quantitative
analysts. The platform provides a deterministic environment where users can launch trading sessions at any
historical timestamp, execute trades as if operating in real-time during past market conditions, and access
detailed performance analytics.

Core Capabilities
e Historical Trading Simulation: Launch trading sessions at any historical timestamp with full market
data replay

e Multi-Session Management: Run multiple concurrent trading sessions with different instruments and
parameters

e Real-Time Controls: Interactive time controls with play/pause functionality and variable speed settings
(0.5x, 1x, 2x%, 5%, 10x)

e Advanced Analytics: Comprehensive trading performance metrics and detailed session analytics
e Professional Tools: Position management, risk controls, and sophisticated order execution

e Subscription Tiers: Role-based access control with tiered subscription system

Features

Trading Features

e Multi-Session Management: Run multiple concurrent trading sessions with different instruments

e Real-Time Simulation: Interactive time controls with play/pause and variable speed settings -Position
Management: Open, modify, and close positions with real-time P&L tracking

e Advanced Analytics: Comprehensive trading performance metrics and session analytics

e Multiple Instruments: Support for various trading instruments (XAUUSD, EURUSD, etc.) and
timeframes

e Historical Data: Full historical candlestick data stored in ClickHouse for fast retrieval

Platform Features

e User Authentication: Secure JWT-based authentication with refresh tokens

e Role-Based Access Control: Tiered subscription system (User, Trader, Expert, Admin)

e Subscription Management: Stripe integration for payment processing and subscription management
e Dataset Management: Upload, process, and manage trading datasets

e Email Notifications: Automated email notifications for account events

e Modern Ul: Intuitive React-based interface with interactive candlestick charts

e Background Processing: Asynchronous job processing with RabbitMQ

e Object Storage: MinlO integration for dataset file storage

e Caching Layer: Redis-based caching for improved performance

No. 2 /10 - README - REICHHART Damien - 2026-01-18

af://n40
af://n42
af://n57
af://n58
af://n70

No. 3/10 - README - REICHHART Damien - 2026-01-18

Infrastructure Features

e Microservices Architecture: Separate services for API, Worker, and Scheduler

e Database Migrations: Automated Prisma migrations with health checks

® Queue Retry System: Automatic retry mechanism for failed jobs

e Health Monitoring: Comprehensive health checks for all services

e Security Hardening: Non-root containers, capability dropping, and security best practices

e Cloudflare Tunnel: Secure remote access without exposing ports

Architecture

BackTrade is built as a modern, scalable monorepo using pnpm workspaces and Turbo for efficient build
orchestration.

Services

The platform consists of the following services:

Service Description Port (Dev)
Frontend React web application served by Nginx 5173
Backend API Express.js REST API server 21799
Worker Background job processor for async tasks -
Scheduler Scheduled tasks and queue retry handler -
PostgreSQL Primary relational database 5432
Redis Caching and session storage 6379
ClickHouse Analytics database for time-series data 8123, 9002
MinlO Object storage for datasets 9000, 9001
RabbitMQ Message queue for job processing 5672, 15672
Nginx Reverse proxy (production only) 80
Cloudflare Tunnel Secure remote access (production only) -
Network Architecture

The production environment uses three isolated Docker networks:

e Backend Network (192.168.250.0/24): Database, cache, storage, and message queue services
e Frontend Network (192.168.251.0/24): Frontend and backend APl communication

e Public Network (192.168.252.0/24): Proxy and tunnel services

No. 3/10 - README - REICHHART Damien - 2026-01-18

af://n90
af://n105
af://n107
af://n158
af://n168

No. 4 / 10 - README - REICHHART Damien - 2026-01-18

Technology Stack

Frontend

e React - Modern Ul framework

e TypeScript - Type-safe development

e Vite - Fast development and optimized production builds

e React Router - Client-side routing

e React Query - Server state management and data fetching

e Zustand - Lightweight client state management

e Lightweight Charts - High-performance candlestick visualization
e Zod - Schema validation and type inference

e Jest - Testing framework

Backend

e Node.js with Express - High-performance API server
e TypeScript - Type-safe backend development

e Prisma - Modern database ORM with type safety

e PostgreSQL - Robust relational database

e ClickHouse - Analytics database for time-series data
e Redis (ioredis) - High-performance caching layer

e RabbitMQ - Message queue for asynchronous processing
e MinlO - S3-compatible object storage

e Zod - Request/response validation

e Pino - Structured logging

e Argon2 - Secure password hashing

e Helmet - Security headers

e CORS - Cross-origin resource sharing

e Stripe - Payment processing

Prerequisites

Before you begin, ensure you have the following installed:

* Node.js (LTS version recommended)

e pnpm (version 10.20.0 or later)

e Docker (version 20.10 or later)

e Docker Compose (version 2.0 or later)

e Git

No. 4 / 10 - README - REICHHART Damien - 2026-01-18

af://n168
af://n169
af://n189
af://n219

No. 5/10 - README - REICHHART Damien - 2026-01-18

Verify Installation

node --version # Should be LTS version

pnpm --version # Should be 10.20.0 or later
docker --version # Should be 20.10+

docker compose version # Should be 2.0+

Quick Start
1. Clone the Repository

git clone https://github.com/DamienReichhart/BackTrade.git
cd BackTrade

2. Install Dependencies

pnpm install

3. Configure Environment Variables
The project requires environment configuration files:
Root Environment File

Create .env in the root directory (for Docker services):

Copy from example (if available) or create manually
cp .env.example .env

cp .env.example apps/api/.env

cp .env.example apps/worker/.env

cp .env.example apps/scheduler/.env

4. Start Development Environment

Option A: Using Docker Compose (Recommended)

Start all services:

docker compose -f docker-dev.yaml up -d
Initialize the database (run migrations and seed data):

docker compose -f docker-dev.yaml exec dev pnpm --filter @backtrade/data prisma:init
Or use the Makefile:

make setup # Installs dependencies, builds, starts dev, and initializes database

No. 5/10 - README - REICHHART Damien - 2026-01-18

af://n232
af://n235
af://n236
af://n238
af://n240
af://n242
af://n245
af://n246

No. 6 / 10 - README - REICHHART Damien - 2026-01-18

5. Access the Application

Once all services are running:

e Frontend: http://localhost:5173

e API: http://localhost:21799

e API Health Check: http://localhost:21799/api/v1/health

e RabbitMQ Management: http://localhost: 15672

e MinlO Console: http://localhost:9001

Development

Development Workflow

1. Start Development Environment
make dev

2. Access Development Container
make dev-shell

3. Run Database Migrations
make db-migrate

4. View Logs
make dev-Tlogs

Code Quality

The project enforces high code quality standards:
e ESLint - Code linting and style enforcement
e TypeScript - Static type checking
e Prettier - Code formatting

e Jest- Comprehensive test coverage

Pre-Commit Hooks - Automated quality checks

Git Commit Standards

All commits must follow the Conventional Commits specification with required type and scope. See
documentation/git-commit-standards.md for details.

No. 6 / 10 - README - REICHHART Damien - 2026-01-18

af://n253
http://localhost:5173/
http://localhost:21799/
http://localhost:21799/api/v1/health
http://localhost:15672/
http://localhost:9001/
af://n267
af://n268
af://n282
af://n295
https://www.conventionalcommits.org/

No. 7 /10 - README - REICHHART Damien - 2026-01-18

Makefile Commands

The project includes a comprehensive Makefile for common operations:

Development

make dev Start development environment

make dev-build Build and start development environment
make dev-stop Stop development environment
make dev-down Stop and remove development containers
make dev-Tlogs View development environment Togs

make dev-shell Oopen shell in development container

HFOH OB O H B R

make dev-restart Restart development environment

Database Management

make db-init
make db-generate

Initialize database (generate, deploy migrations, and seed)
Generate Prisma client

Run Prisma migrations

Deploy Prisma migrations (production mode)

make db-migrate
make db-deploy
Seed database with initial data

Open Prisma Studio (database GUI)

make db-seed

HOH O H H W R

make db-studio

Code Quality

make lint Run ESLint on all packages

make typecheck Run TypeScript type checking
Format code with Prettier

Check code formatting

make format
make format-check
make test Run all tests

make test-coverage Run tests with coverage report

HOH O H H W H

make quality Run all code quality checks (lint + typecheck + format-check)

Build & Start

make build # Build all packages and applications

make start # Start all build services (non-docker)
Cleanup

make clean # Clean build artifacts and node_modules

HH

make clean-all Clean everything including Docker volumes

make prune # Remove unused Docker resources

No. 7 /10 - README - REICHHART Damien - 2026-01-18

af://n297
af://n299
af://n301
af://n303
af://n305
af://n307
af://n310

No. 8 /10 - README - REICHHART Damien - 2026-01-18

Production Deployment

Prerequisites

All environment variables configured (see Configuration)
Docker and Docker Compose installed

Sufficient system resources (see resource limits in docker-prod.yaml)

Deployment Steps

1. Configure Environment Variables

Ensure all required environment variables are set in the root .env file.

2. Build and Start Services

docker compose -f docker-prod.yaml up -d --build

Or using Makefile:

make prod-build

3. Verify Services

Check service health:

docker compose -f docker-prod.yaml ps
docker compose -f docker-prod.yaml logs -f

4. Access the Application

o |If using Cloudflare Tunnel: Access via your configured tunnel URL

o |[f testing locally: http://localhost (port 80)

Production Services

The production stack includes:

Frontend: React application served by Nginx (distroless image)
Backend: Express.js APl server with health checks

Worker: Background job processor for async tasks

Scheduler: Scheduled tasks and queue retry handler

Migrate: Database migration service (runs once on startup)
PostgreSQL: Primary database with persistent storage

Redis: Caching layer with persistent storage

ClickHouse: Analytics database with persistent storage

MinlO: Object storage with persistent storage

RabbitMQ: Message queue with persistent storage

No. 8 /10 - README - REICHHART Damien - 2026-01-18

af://n310
af://n311
af://n319
http://localhost/
af://n340

No. 9/10 - README - REICHHART Damien - 2026-01-18

¢ Proxy: Nginx reverse proxy

e Cloudflare Tunnel: Secure remote access

Production Makefile Commands

make
make
make
make
make
make

prod
prod-build
prod-stop
prod-down
prod-Togs
prod-restart

HOH O H O H W R

Start production environment

Build and start production environment
Stop production environment

Stop and remove production containers
View production environment Togs
Restart production environment

Project Structure

BackTrade/

|_

|_
l_

L

apps/

F— api/

— web/

— worker/
L— scheduler/
packages/

— datas/

F— types/

b— utils/

— cache/

— queue/

}— storage/
F— mailer/
— Tlogger/
— eslint-config/
L— tsconfig/
docker/

— dimages/
L— config/
k8s/
documentation/
assets/

Express.js backend API
React frontend application
Background job processor

* OB H

Scheduled tasks service

Data access layer (Prisma, ClickHouse, repositories)
Shared TypeScript types and zod schemas

Shared utility functions

Redis caching Tayer

RabbitMQ integration

MinIO object storage integration

Email service

Structured logging

Shared ESLint configuration

HF oW OH OH OH OH W K H

Shared TypeScript configuration

Dockerfile definitions

Service configuration files
Kubernetes deployment manifests
Project documentation

* O H W R

Brand assets and Tlogos

Available Scripts

Root Scripts

pnpm
pnpm
pnpm
pnpm
pnpm
pnpm
pnpm
pnpm

dev

build

start
typecheck
Tint

test
test:coverage
format

FHOoH OH OH W B H W

Start all services in development mode
Build all packages and applications
Start all build services

Type check all packages

Lint all packages

Run all tests

Run tests with coverage report

Format code with Prettier

No. 9/10 - README - REICHHART Damien - 2026-01-18

af://n367
af://n369
af://n371
af://n372

No. 10/ 10 - README - REICHHART Damien - 2026-01-18

pnpm format:check # Check code formatting

Package-Specific Scripts

Each package and app has its own scripts defined in its package.json . Use Turbo filters to run scripts in
specific packages:

pnpm --filter @backtrade/api <script>
pnpm --filter @backtrade/web <script>
pnpm --filter @backtrade/data <script>

Testing
Run Tests

Run all tests
pnpm test

Run tests in watch mode
pnpm test:watch

Run tests with coverage report
pnpm test:coverage

License

This project is licensed under a Proprietary License. See the LICENSE file for details.

Important: This is a read-only license. No execution, copying, or distribution rights are granted.

Contact

REICHHART Damien

e Email: contact@damien-reichhart.fr

e Project: BackTrade Trading Platform

Built with @ for the trading community

Report Bug *
Request Feature *
Documentation

No. 10/ 10 - README - REICHHART Damien - 2026-01-18

af://n374
af://n378
af://n379
af://n382
file:///D:/Downloads/BackTrade/LICENSE
af://n386
mailto:contact@damien-reichhart.fr
mailto:contact@damien-reichhart.fr
mailto:contact@damien-reichhart.fr
file:///D:/Downloads/BackTrade/documentation

	BackTrade
	Table of Contents
	Overview
	Core Capabilities

	Features
	Trading Features
	Platform Features
	Infrastructure Features

	Architecture
	Services
	Network Architecture

	Technology Stack
	Frontend
	Backend

	Prerequisites
	Verify Installation

	Quick Start
	1. Clone the Repository
	2. Install Dependencies
	3. Configure Environment Variables
	Root Environment File

	4. Start Development Environment
	Option A: Using Docker Compose (Recommended)

	5. Access the Application

	Development
	Development Workflow
	Code Quality
	Git Commit Standards
	Makefile Commands
	Development
	Database Management
	Code Quality
	Build & Start
	Cleanup

	Production Deployment
	Prerequisites
	Deployment Steps
	Production Services
	Production Makefile Commands

	Project Structure
	Available Scripts
	Root Scripts
	Package-Specific Scripts

	Testing
	Run Tests

	License
	Contact

