
REST API Specifications
Base URL : https://backtrade.damien-reichhart.fr/api
Format : JSON
Authentication : JWT (JSON Web Token)

Required Headers

For all requests :

For protected routes :

For requests with file upload :

CORS
The server must allow requests from the react frontend running on
https://backtrade.damien-reichhart.fr.

Required CORS configuration :

Origin : https://backtrade.damien-reichhart.fr

Methods : GET, POST, PUT, DELETE, PATCH

Headers : Origin, X-Requested-With, Content-Type, Accept, Authorization

Authentication
The API uses JWT tokens to secure endpoints.

JWT Token Format

The token contains the following information :

Content-Type: application/json

Authorization: Bearer {token}

Content-Type: multipart/form-data

Authorization: Bearer {token}

No. 1 / 10 - api - REICHHART Damien - 2026-01-18

No. 1 / 10 - api - REICHHART Damien - 2026-01-18

af://n0
https://backtrade.damien-reichhart.fr/api
af://n3
af://n4
af://n6
af://n8
af://n10
https://backtrade.damien-reichhart.fr/
https://backtrade.damien-reichhart.fr/
af://n20
af://n22

Code Status When to use

200 OK Request successful

201 Created Resource created successfully

400 Bad Request Malformed request or invalid data

401 Unauthorized Authentication required or invalid token

403 Forbidden Access denied (user is not the resource owner)

404 Not Found Resource not found

409 Conflict Conflict (e.g., email already used)

500 Internal Server Error Server error

Validity duration : 1 hour

Token Usage

The token must be included in the Authorization header with the Bearer prefix :

Token Renewal

The token is not automatically renewable or Refresh token

HTTP Codes

{

 "sub": {

 "id": 1,

 "email": "admin@backtrade.com",

 "role": "ADMIN",

 "is_banned": false,

 "stripe_customer_id": "cus_admin123",

 "created_at": "2024-01-01T00:00:00.000Z",

 "updated_at": "2024-01-15T10:30:00.000Z"

 },

 "iat": 123456,

 "exp": 123456

}

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...

No. 2 / 10 - api - REICHHART Damien - 2026-01-18

No. 2 / 10 - api - REICHHART Damien - 2026-01-18

af://n26
af://n29
af://n31
af://n69

Name Content Description

PaginationQuery
{ page?: number, limit?: number, sort?:

string, order?: 'asc' \| 'desc' }

Common
pagination
parameters

SearchQuery { q?: string } & PaginationQuery
Common search
parameters

DateRangeQuery
{ ts_gte?: string, ts_lte?: string } &

PaginationQuery

Common date
range filter
parameters

PositionQuery
{ session_id?: number, status?:

PositionStatus } & PaginationQuery

Position query
parameters with
optional session
and status filters

PublicUser

{ id: number, email: string, role: Role,

is_banned: boolean, stripe_customer_id?:

string, created_at: string, updated_at:

string }

Public user data
(no password
hash)

Role 'ADMIN' \| 'USER' User role

LoginRequest { email: string, password: string }
Request body for
login

RegisterRequest
{ email: string, password: string,

confirmPassword: string }

Request body for
registration

RefreshTokenRequest { refreshToken: string }
Request body for
token refresh

ChangePasswordRequest
{ currentPassword: string, newPassword:

string }

Request body for
changing
password
(newPassword
min 8 chars)

Error Format

Schemas

{

 "error": {

 "message": "Error description",

 "code": "error code"

 }

}

No. 3 / 10 - api - REICHHART Damien - 2026-01-18

No. 3 / 10 - api - REICHHART Damien - 2026-01-18

af://n69
af://n71

Name Content Description

ForgotPasswordRequest { email: string }

Request body for
password reset
email

ResetPasswordRequest
{ email: string, code: string,

newPassword: string }

Request body for
password reset
with email, code,
and new
password (min 8
chars)

UpdateUserRequest
{ email?: string, role?: Role,

is_banned?: boolean }

Request body for
updating user
details (all fields
optional)

AuthResponse
{ user: PublicUser, accessToken: string,

refreshToken: string }

Response for
authentication
endpoints

Session

{ id: number, user_id: number,

instrument_id: number, name?: string,

session_status: SessionStatus, speed:

Speed, start_time: string, current_time:

string, end_time?: string,

initial_balance: number, leverage:

Leverage, spread_pts: number,

slippage_pts: number,

commission_per_fill: number, created_at:

string, updated_at: string }

Trading session
entity

CreateSessionRequest

{ instrument_id: number, name?: string,

speed: Speed, start_time: string,

current_time: string, end_time?: string,

initial_balance: number, leverage:

Leverage, spread_pts: number,

slippage_pts: number,

commission_per_fill: number,

session_status?: SessionStatus }

Payload to create
a session (user_id
set automatically,
current_time
must equal
start_time)

UpdateSessionRequest

{ name?: string, session_status?:

SessionStatus, speed?: Speed,

current_time?: string, end_time?: string

}

Payload to update
a session

No. 4 / 10 - api - REICHHART Damien - 2026-01-18

No. 4 / 10 - api - REICHHART Damien - 2026-01-18

Name Content Description

Plan

{ id: number, code: string,

stripe_product_id: string,

stripe_price_id: string, currency:

string, price: number,

max_active_sessions: number }

Subscription plan
entity

CreatePlanRequest

{ code: string, stripe_product_id:

string, stripe_price_id: string,

currency: string, price: number,

max_active_sessions: number }

Payload to create
a plan

UpdatePlanRequest

{ code?: string, stripe_product_id?:

string, stripe_price_id?: string,

currency?: string, price?: number,

max_active_sessions?: number }

Payload to update
a plan

Subscription

{ id: number, user_id: number, plan_id:

number, stripe_subscription_id: string,

status: SubscriptionStatus,

current_period_start: string,

current_period_end: string,

cancel_at_period_end: boolean }

User subscription
entity

CreateSubscriptionRequest

{ user_id: number, plan_id: number,

stripe_subscription_id: string,

current_period_start: string,

current_period_end: string, status?:

SubscriptionStatus, cancel_at_period_end:

boolean }

Payload to create
a subscription

UpdateSubscriptionRequest
{ status?: SubscriptionStatus,

cancel_at_period_end?: boolean }

Payload to update
a subscription

Transaction

{ id: number, session_id?: number,

transaction_type: TransactionType,

amount: number, balance_after: number,

created_at: string, updated_at: string }

Financial
transaction entity

CreateTransactionRequest
{ session_id?: number, transaction_type:

TransactionType, amount: number,

balance_after: number }

Payload to create
a transaction

No. 5 / 10 - api - REICHHART Damien - 2026-01-18

No. 5 / 10 - api - REICHHART Damien - 2026-01-18

Name Content Description

Position

{ id: number, session_id: number,

position_status: PositionStatus, side:

Side, quantity_lots: number, tp_price?:

number, sl_price?: number, entry_price:

number, exit_price?: number, opened_at:

string, closed_at?: string,

realized_pnl?: number, unrealized_pnl?:

number, commission_cost?: number,

slippage_cost?: number, spread_cost?:

number, created_at: string, updated_at:

string }

Trading position
entity

CreatePositionRequest

{ session_id: number, side: Side,

entry_price: number, quantity_lots:

number, tp_price?: number, sl_price?:

number, position_status: PositionStatus,

opened_at: string }

Payload to create
a position

UpdatePositionRequest

{ position_status?: PositionStatus,

exit_price?: number, closed_at?: string,

realized_pnl?: number, commission_cost?:

number, slippage_cost?: number,

spread_cost?: number, tp_price?: number,

sl_price?: number }

Payload to update
a position

Dataset

{ id: number, instrument_id: number,

timeframe: Timeframe, uploaded_at?:

string, records_count?: number,

file_name?: string, start_time?: string,

end_time?: string, created_at: string,

updated_at: string }

Dataset entity

CreateDatasetRequest
{ instrument_id: number, timeframe:

Timeframe }

Payload to create
a dataset

UpdateDatasetRequest
{ instrument_id: number, timeframe:

Timeframe }

Payload to update
a dataset

Instrument
{ id: number, symbol: string,

display_name: string, pip_size: number,

created_at: string, updated_at: string }

Trading
instrument entity

CreateInstrumentRequest
{ symbol: string, display_name: string,

pip_size: number }

Payload to create
an instrument

UpdateInstrumentRequest
{ display_name?: string, pip_size?:

number }

Payload to update
an instrument

No. 6 / 10 - api - REICHHART Damien - 2026-01-18

No. 6 / 10 - api - REICHHART Damien - 2026-01-18

Verb Endpoint Query Params Request body Response type
Status
codes

Description

POST /auth/login - LoginRequest AuthResponse
200, 400,
401

Authenticate user

POST /auth/register - RegisterRequest AuthResponse
201, 400,
409

Register new user

POST /auth/refresh-token - RefreshTokenRequest AuthResponse
200, 400,
401

Refresh access token

GET /auth/me - - PublicUser 200, 401
Get current
authenticated user

POST /auth/users/requester/password - ForgotPasswordRequest - 200, 400
Request password reset
email (sends 6-digit
code, expires in 15 min)

POST /auth/users/resetter/password - ResetPasswordRequest - 200, 400
Reset password with
email, code, and new
password

GET /health - - { status: string } 200 Health check endpoint

GET /users SearchQuery - PublicUser[]
200, 401,
403

List all users (Admin
only)

GET /users/:id - - PublicUser
200, 401,
403, 404

Get user by ID

GET /users/:id/subscriptions DateRangeQuery - Subscription[]
200, 401,
404

List subscriptions by
user

PATCH /users/:id/password - ChangePasswordRequest -
200, 400,
401

Change user password

PATCH /users/:id - UpdateUserRequest PublicUser

200, 400,
401, 403,
404, 409

Update user details

DELETE /users/:id - - -
204, 401,
403, 404

Delete user

GET /sessions SearchQuery - Session[] 200, 401 List user sessions

GET /sessions/:id - - Session
200, 401,
404

Get session by ID

POST /sessions - CreateSessionRequest Session
201, 400,
401, 403

Create new session

PATCH /sessions/:id - UpdateSessionRequest Session
200, 400,
401, 404

Update session

DELETE /sessions/:id - - -
204, 401,
404

Delete session

GET /sessions/:id/candles timeframe - Candle[]
200, 401,
403, 404

List last 2000 candles for
a session in a specified
timeframe

GET /sessions/:id/info - - SessionInfo
200, 401,
403, 404

Get session information
(current balance, equity,
margin, etc.)

GET /sessions/:id/analytics - - SessionAnalyticsResponse
200, 401,
403, 404

Get detailed session
analytics

PATCH /sessions/:id/skip timeframe - SessionSkipResponse

200, 400,
401, 403,
404

Skip to the next candle
for a session (advances
current_time, processes
TP/SL checks)

| SessionAnalyticsResponse | { summary: AnalyticsSummary, equity_curve: EquityCurvePoint[],

breakdowns: AnalyticsBreakdowns, costs: AnalyticsCosts, top_winners: Position[], worst_losers:

Position[], daily_pnl: DailyPnL[] } | Detailed analytics response for a session |

| AnalyticsSummary | { total_trades: number, expectancy: number, commission_paid: number,

return_percentage: number, win_rate: number, profit_factor: number, start_balance: number,

ending_equity: number, net_pnl: number, sharpe_ratio: number, sortino_ratio: number,

max_drawdown: number, win_streak: number, lose_streak: number } | Performance summary metrics

including win/loss streaks calculated from all closed positions in chronological order |
| SessionSkipResponse | { session: Session, candle: Candle } | Response for skipping to the next

candle, includes updated session and new candle data |

API Routes

No. 7 / 10 - api - REICHHART Damien - 2026-01-18

No. 7 / 10 - api - REICHHART Damien - 2026-01-18

af://n214

Verb Endpoint Query Params Request body Response type
Status
codes

Description

GET /sessions/:id/positions PositionQuery - Position[]
200, 401,
404

List positions by session

GET /sessions/:id/transactions PaginationQuery - Transaction[]
200, 401,
404

List transactions by
session

PUT /sessions/:id - UpdateSessionRequest Session
200, 400,
401, 404

Update session
(alternative to PATCH)

GET /plans SearchQuery - Plan[] 200, 401
List subscription plans
(Auth required)

GET /plans/:id - - Plan
200, 401,
404

Get plan by ID (Auth
required)

POST /plans - CreatePlanRequest Plan
201, 400,
401, 403

Create plan (Admin)

PATCH /plans/:id - UpdatePlanRequest Plan

200, 400,
401, 403,
404

Update plan (Admin)

DELETE /plans/:id - - -
204, 401,
403, 404

Delete plan (Admin)

GET /subscriptions DateRangeQuery - Subscription[] 200, 401 List user subscriptions

GET /subscriptions/:id - - Subscription
200, 401,
404

Get subscription by ID

POST /subscriptions - CreateSubscriptionRequest Subscription
201, 400,
401, 403

Create subscription
(Admin only)

PATCH /subscriptions/:id - UpdateSubscriptionRequest Subscription

200, 400,
401, 403,
404

Update subscription
(Admin only)

DELETE /subscriptions/:id - - -
204, 401,
403, 404

Cancel subscription
(Admin only)

GET /transactions DateRangeQuery - Transaction[] 200, 401 List user transactions

GET /transactions/:id - - Transaction
200, 401,
404

Get transaction by ID

POST /transactions - CreateTransactionRequest Transaction
201, 400,
401

Create transaction

GET /positions
PositionQuery

(session_id?)
- Position[] 200, 401

List all positions
(optionally filtered by
session_id)

GET /positions/:id - - Position
200, 401,
404

Get position by ID

POST /positions - CreatePositionRequest Position
201, 400,
401

Open new position

PUT /positions/:id - UpdatePositionRequest Position
200, 400,
401, 404

Update position
(alternative to PATCH,
use to close position)

PATCH /positions/:id - UpdatePositionRequest Position
200, 400,
401, 404

Update position (use to
close position)

PATCH /sessions/:id/positions closeAll=true -
{ closed: number, failed: number,

total: number }

200, 400,
401, 404

Close all positions for
session

DELETE /positions/:id - - -
204, 401,
404

Delete position

GET /datasets DateRangeQuery - Dataset[]
200, 401,
403

List datasets (Admin
only)

GET /datasets/:id - - Dataset
200, 401,
403, 404

Get dataset by ID (Admin
only)

POST /datasets - CreateDatasetRequest Dataset
201, 400,
401, 403

Create dataset (Admin
only)

POST /datasets/:id/file - multipart/form-data Dataset

200, 400,
401, 403,
404

Upload dataset file
(Admin only)

PUT /datasets/:id - UpdateDatasetRequest Dataset

200, 400,
401, 403,
404

Update dataset (Admin
only, alternative to
PATCH)

PATCH /datasets/:id - UpdateDatasetRequest Dataset

200, 400,
401, 403,
404

Update dataset (Admin
only)

DELETE /datasets/:id - - -
204, 401,
403, 404

Delete dataset (Admin
only)

GET /instruments SearchQuery - Instrument[] 200, 401
List instruments (Auth
required)

No. 8 / 10 - api - REICHHART Damien - 2026-01-18

No. 8 / 10 - api - REICHHART Damien - 2026-01-18

Verb Endpoint Query Params Request body Response type
Status
codes

Description

GET /instruments/:id - - Instrument
200, 401,
404

Get instrument by ID
(Auth required)

POST /instruments - CreateInstrumentRequest Instrument
201, 400,
401, 403

Create instrument
(Admin only)

PUT /instruments/:id - UpdateInstrumentRequest Instrument

200, 400,
401, 403,
404

Update instrument
(Admin only, alternative
to PATCH)

PATCH /instruments/:id - UpdateInstrumentRequest Instrument

200, 400,
401, 403,
404

Update instrument
(Admin only)

DELETE /instruments/:id - - -
204, 401,
403, 404

Delete instrument
(Admin only)

POST /stripe/checkout - { planId: number }
{ sessionId: string, url: string

}

200, 400,
401

Create Stripe checkout
session

POST /stripe/portal - - { url: string } 200, 401
Create Stripe customer
portal session

GET /stripe/checkout/:sessionId - -
{ status: string, subscriptionId:

string \| null, customerId:

string \| null }

200, 400,
401

Get checkout session
status

POST /stripe/webhook - Raw JSON (Stripe event) - 200
Stripe webhook
endpoint (no auth,
signature verified)

Authentication and authorization

All routes related to resources must be protected by authorization. The authentication token is
transmitted by the front-end in the HTTP header :

Before any modification or deletion of a resource, the server must verify that the identifier of the
currently authenticated user matches the identifier of the resource owner. If the identifiers do not
match, the request must be rejected with a response :

HTTP Code : 403 Forbidden

This verification ensures that only the legitimate owner of a resource is authorized to modify or
delete it.

Public Routes

GET /health

POST /auth/login

POST /auth/register

POST /auth/refresh-token

POST /auth/users/requester/password

POST /auth/users/resetter/password

Authorization: Bearer <token>

{

 "error": {

 "message": "You are not authorized to modify this resource",

 "message": "403"

 }

}

No. 9 / 10 - api - REICHHART Damien - 2026-01-18

No. 9 / 10 - api - REICHHART Damien - 2026-01-18

af://n720
af://n727

POST /stripe/webhook (no auth, signature verified)

Protected Routes

All other routes require a valid JWT token.

Routes with ownership verification

The following routes require that the user be the creator of the resource in question or to be an
admin :

All /sessions routes (except admin can access any)

All /positions routes (except admin can access any)

All /transactions routes (except admin can access any)

GET /subscriptions (users see own, admins see all)

GET /subscriptions/:id (ownership or admin)

POST/PATCH/DELETE /subscriptions (Admin only)

GET/PATCH/DELETE /users/:id (ownership or admin)

PATCH /users/:id/password (ownership or admin)

Session Limits

Session creation is subject to active session limits based on the user's subscription plan:

Free users (no subscription): 1 active session

TRADER plan: 10 active sessions

EXPERT plan: 30 active sessions

Admin users: Unlimited (bypass all limits)

An active session is defined as a session with session_status not equal to ARCHIVED (i.e., RUNNING or

PAUSED).

When attempting to create a session that would exceed the limit, the API returns a 400 Bad Request error

with a detailed message:

Note: Archiving a session (setting session_status to ARCHIVED) frees up a slot for creating new sessions.

Version : 1.3.0
Date : 15 January 2026

{

 "error": {

 "message": "You have reached your maximum active sessions limit (X sessions for

[PLAN_NAME] plan)"

 }

}

No. 10 / 10 - api - REICHHART Damien - 2026-01-18

No. 10 / 10 - api - REICHHART Damien - 2026-01-18

af://n743
af://n745
af://n764

	REST API Specifications
	Required Headers
	For all requests :
	For protected routes :
	For requests with file upload :

	CORS
	Authentication
	JWT Token Format
	Token Usage
	Token Renewal

	HTTP Codes
	Error Format
	Schemas
	API Routes
	Authentication and authorization
	Public Routes
	Protected Routes
	Routes with ownership verification
	Session Limits

