No. 1/ 6 - git-commit-standards - REICHHART Damien - 2026-01-18

Git Commit Standards

This document defines the commit message conventions used in the BackTrade project. Following these
standards ensures a clear, consistent, and maintainable git history that facilitates code reviews, automated
changelog generation, and project maintenance.

Table of Contents

e Commit Message Format

e Commit Types

* Scopes

* Message Body

* Breaking Changes
* Examples

e Best Practices

e Common Mistakes to Avoid

Commit Message Format

All commit messages MUST follow the Conventional Commits specification:

<type>(<scope>): <subject>
[optional body]

[optional footer(s)]

Format Rules

1. Type and scope are required for all commits

2. Subject must be in lowercase and use imperative mood (e.g., "fix bug" not "fixed bug" or "fixes bug")
3. Subject must not end with a period

4. Subject should be concise but descriptive (50-72 characters recommended)

5. Type and scope are separated by a colon and space: type(scope):

6. Scope is enclosed in parentheses and is optional but highly recommended

Commit Types

The following types are allowed in commit messages:

No. 1/ 6 - git-commit-standards - REICHHART Damien - 2026-01-18


af://n0
af://n4
af://n23
af://n26
af://n41

Type

feat

fix

docs

style

refactor

perf

test

chore

ci

build

revert

No. 2 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

Description

A new feature that adds functionality to the
application

A bug fix that resolves an issue or incorrect behavior

Documentation-only changes (README, code
comments, APl docs)

Code style changes (formatting, whitespace,
semicolons) that do not affect functionality

Code refactoring that neither fixes a bug nor adds a
feature

Performance improvements

Adding or updating tests

Maintenance tasks, dependency updates, build
configuration changes

Changes to CI/CD configuration files

Changes to build system or external dependencies

Reverts a previous commit

Type Selection Guidelines

Example

feat(api): add user

authentication

fix(web): resolve chart

rendering issue

docs(api): update
authentication guide

style(web): format component

with prettier

refactor(api): simplify user

service

perf(api): optimize database

queries

test(api): add user service

unit tests

chore(deps): update express

to v4.18

Cci: update GitHub Actions

workflow

build: update webpack

configuration

revert: "feat(api): add new

endpoint"

e Use feat when adding new functionality that users or developers will interact with

e Use fix when correcting incorrect behavior or resolving bugs

e Use chore for dependency updates, tooling changes, or maintenance tasks

e Use refactor when restructuring code without changing behavior

e Use docs only for documentation changes (not code comments)

Scopes

Scopes identify the area of the codebase affected by the change. They should be lowercase and match the
project structure.

No. 2 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18


af://n92
af://n105

No. 3 /6 - git-commit-standards - REICHHART Damien - 2026-01-18

Standard Scopes

Based on the BackTrade project structure, the following scopes are recommended:

Application Scopes

Scope Description Example
. Backend API changes (Express, controllers, services, fix(api): validate request
api
routes) body
5 Frontend application changes (React components, pages, feat(web): add user
we
hooks) dashboard

Package Scopes

Scope Description Example
Shared TypeScript types and Zod .

types feat(types): add instrument type schema
schemas

refactor(utils): optimize date

utils Shared utility functions
formatting
) o fix(datas): correct user repository
datas Data access layer (Prisma, repositories)
query
config Configuration packages chore(config): update environment schema
Infrastructure Scopes
Scope Description Example
ok Docker configuration, Dockerfiles, docker- fix(docker): update minio image
ocker
compose version
) ) ) feat(k8s): add HPA for backend
k8s Kubernetes manifests and configuration )
service
Architecture changes affecting multiple . .
arch feat(arch): introduce SSL for minio
systems
ci Cl/CD pipeline configuration ci: add automated testing workflow
build Build system configuration build: update turbo configuration

No. 3 /6 - git-commit-standards - REICHHART Damien - 2026-01-18


af://n107
af://n109
af://n123
af://n145

No. 4 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

Other Scopes
Scope Description Example
deps Dependency updates (when not app-specific) chore(deps): update all packages
docs Documentation files docs: add git commit standards
test Test configuration or shared test utilities test: update jest configuration

Scope Selection Guidelines

1. Be specific: Use the most specific scope that accurately describes the change

2. Match structure: Scopes should align with the project's directory structure

3. Use arch for architectural changes that span multiple systems or affect infrastructure
4. Avoid generic scopes: Prefer specific scopes like api or web over generic ones like app

5. Consistency: Use consistent naming (e.g., always use arch)

Message Body

The message body is optional but recommended for complex changes. It should:

e Provide additional context about the change

e Explain why the change was made, not just what changed
e Reference related issues or pull requests

e Be separated from the subject by a blank line

e Wrap at 72 characters per line

Body Format

feat(api): add user authentication endpoint

Implement JwT-based authentication with refresh token support.
This enables secure user sessions and addresses security
requirements outlined in issue #123.

- Add POST /api/vl/auth/Togin endpoint

- Add POST /api/vl/auth/refresh endpoint
- Implement token validation middleware

Breaking Changes

Breaking changes MUST be indicated in the commit message footer using the BREAKING CHANGE: keyword or
by appending ! after the type/scope.

No. 4 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18


af://n171
af://n189
af://n202
af://n215
af://n218

No. 5/ 6 - git-commit-standards - REICHHART Damien - 2026-01-18

Format 1: Footer

feat(api): change authentication response format
BREAKING CHANGE: The authentication endpoint now returns

tokens in a nested object instead of flat structure.
Migration guide available in docs/auth-migration.md.

Format 2: Type Suffix

feat(api)!: change authentication response format

The authentication endpoint now returns tokens in a nested
object instead of flat structure.

Examples

Here are commits following best practices:

fix(api): prevent instrument creation with existing id

Add validation to reject instrument creation requests that
include an id field, as instruments should be auto-generated.

feat(arch): add script to generate third party licenses for Tinux

Create shell script to automate license file generation
for compliance requirements on Linux systems.

fix(docker): pin minio image to specific version

Update minio dockerfile to use version 1.2.3 instead of
latest tag for better reproducibility and stability.

fix(api): correct minio downloadFile return type to Buffer
The downloadFile function was incorrectly typed. Update

implementation and types to ensure it returns Buffer as
expected by downstream consumers.

feat(arch): introduce SSL support for minio
configure minio with SSL/TLS certificates to enable secure

communication. This includes certificate generation and
nginx proxy configuration updates.

No. 5/ 6 - git-commit-standards - REICHHART Damien - 2026-01-18


af://n220
af://n222
af://n225

No. 6 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

fix(api): validate search query schema and return 400 on parse error
Add validation middleware to ensure search query parameters

conform to expected schema. Return BadRequestError when
validation fails instead of allowing invalid queries.

Complex Example with Body

feat(api): add dataset upload endpoint with validation

Implement POST /api/vl/datasets/upload endpoint that allows
users to upload trading datasets. The endpoint includes:

- File size validation (max 100MB)
- Content type validation (CSV only)
- Automatic dataset parsing and storage

- Integration with MinIO for file storage

Closes #296

No. 6 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18


af://n233

	Git Commit Standards
	Table of Contents
	Commit Message Format
	Format Rules

	Commit Types
	Type Selection Guidelines

	Scopes
	Standard Scopes
	Application Scopes
	Package Scopes
	Infrastructure Scopes
	Other Scopes

	Scope Selection Guidelines

	Message Body
	Body Format

	Breaking Changes
	Format 1: Footer
	Format 2: Type Suffix

	Examples
	Complex Example with Body



