
Git Commit Standards
This document defines the commit message conventions used in the BackTrade project. Following these
standards ensures a clear, consistent, and maintainable git history that facilitates code reviews, automated
changelog generation, and project maintenance.

Table of Contents
Commit Message Format

Commit Types

Scopes

Message Body

Breaking Changes

Examples

Best Practices

Common Mistakes to Avoid

Commit Message Format
All commit messages MUST follow the Conventional Commits specification:

Format Rules

1. Type and scope are required for all commits

2. Subject must be in lowercase and use imperative mood (e.g., "fix bug" not "fixed bug" or "fixes bug")

3. Subject must not end with a period

4. Subject should be concise but descriptive (50-72 characters recommended)

5. Type and scope are separated by a colon and space: type(scope):

6. Scope is enclosed in parentheses and is optional but highly recommended

Commit Types
The following types are allowed in commit messages:

<type>(<scope>): <subject>

[optional body]

[optional footer(s)]

No. 1 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

No. 1 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

af://n0
af://n4
af://n23
af://n26
af://n41

Type Description Example

feat
A new feature that adds functionality to the
application

feat(api): add user

authentication

fix A bug fix that resolves an issue or incorrect behavior
fix(web): resolve chart

rendering issue

docs
Documentation-only changes (README, code
comments, API docs)

docs(api): update

authentication guide

style
Code style changes (formatting, whitespace,
semicolons) that do not affect functionality

style(web): format component

with prettier

refactor
Code refactoring that neither fixes a bug nor adds a
feature

refactor(api): simplify user

service

perf Performance improvements
perf(api): optimize database

queries

test Adding or updating tests
test(api): add user service

unit tests

chore
Maintenance tasks, dependency updates, build
configuration changes

chore(deps): update express

to v4.18

ci Changes to CI/CD configuration files
ci: update GitHub Actions

workflow

build Changes to build system or external dependencies
build: update webpack

configuration

revert Reverts a previous commit
revert: "feat(api): add new

endpoint"

Type Selection Guidelines

Use feat when adding new functionality that users or developers will interact with

Use fix when correcting incorrect behavior or resolving bugs

Use chore for dependency updates, tooling changes, or maintenance tasks

Use refactor when restructuring code without changing behavior

Use docs only for documentation changes (not code comments)

Scopes
Scopes identify the area of the codebase affected by the change. They should be lowercase and match the
project structure.

No. 2 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

No. 2 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

af://n92
af://n105

Scope Description Example

api
Backend API changes (Express, controllers, services,
routes)

fix(api): validate request

body

web
Frontend application changes (React components, pages,
hooks)

feat(web): add user

dashboard

Scope Description Example

types
Shared TypeScript types and Zod
schemas

feat(types): add instrument type schema

utils Shared utility functions
refactor(utils): optimize date

formatting

datas Data access layer (Prisma, repositories)
fix(datas): correct user repository

query

config Configuration packages chore(config): update environment schema

Scope Description Example

docker
Docker configuration, Dockerfiles, docker-
compose

fix(docker): update minio image

version

k8s Kubernetes manifests and configuration
feat(k8s): add HPA for backend

service

arch
Architecture changes affecting multiple
systems

feat(arch): introduce SSL for minio

ci CI/CD pipeline configuration ci: add automated testing workflow

build Build system configuration build: update turbo configuration

Standard Scopes

Based on the BackTrade project structure, the following scopes are recommended:

Application Scopes

Package Scopes

Infrastructure Scopes

No. 3 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

No. 3 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

af://n107
af://n109
af://n123
af://n145

Scope Description Example

deps Dependency updates (when not app-specific) chore(deps): update all packages

docs Documentation files docs: add git commit standards

test Test configuration or shared test utilities test: update jest configuration

Other Scopes

Scope Selection Guidelines

1. Be specific: Use the most specific scope that accurately describes the change

2. Match structure: Scopes should align with the project's directory structure

3. Use arch for architectural changes that span multiple systems or affect infrastructure

4. Avoid generic scopes: Prefer specific scopes like api or web over generic ones like app

5. Consistency: Use consistent naming (e.g., always use arch)

Message Body
The message body is optional but recommended for complex changes. It should:

Provide additional context about the change

Explain why the change was made, not just what changed

Reference related issues or pull requests

Be separated from the subject by a blank line

Wrap at 72 characters per line

Body Format

Breaking Changes
Breaking changes MUST be indicated in the commit message footer using the BREAKING CHANGE: keyword or
by appending ! after the type/scope.

feat(api): add user authentication endpoint

Implement JWT-based authentication with refresh token support.

This enables secure user sessions and addresses security

requirements outlined in issue #123.

- Add POST /api/v1/auth/login endpoint

- Add POST /api/v1/auth/refresh endpoint

- Implement token validation middleware

No. 4 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

No. 4 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

af://n171
af://n189
af://n202
af://n215
af://n218

Format 1: Footer

Format 2: Type Suffix

Examples
Here are commits following best practices:

feat(api): change authentication response format

BREAKING CHANGE: The authentication endpoint now returns

tokens in a nested object instead of flat structure.

Migration guide available in docs/auth-migration.md.

feat(api)!: change authentication response format

The authentication endpoint now returns tokens in a nested

object instead of flat structure.

fix(api): prevent instrument creation with existing id

Add validation to reject instrument creation requests that

include an id field, as instruments should be auto-generated.

feat(arch): add script to generate third party licenses for linux

Create shell script to automate license file generation

for compliance requirements on Linux systems.

fix(docker): pin minio image to specific version

Update minio dockerfile to use version 1.2.3 instead of

latest tag for better reproducibility and stability.

fix(api): correct minio downloadFile return type to Buffer

The downloadFile function was incorrectly typed. Update

implementation and types to ensure it returns Buffer as

expected by downstream consumers.

feat(arch): introduce SSL support for minio

Configure minio with SSL/TLS certificates to enable secure

communication. This includes certificate generation and

nginx proxy configuration updates.

No. 5 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

No. 5 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

af://n220
af://n222
af://n225

Complex Example with Body

fix(api): validate search query schema and return 400 on parse error

Add validation middleware to ensure search query parameters

conform to expected schema. Return BadRequestError when

validation fails instead of allowing invalid queries.

feat(api): add dataset upload endpoint with validation

Implement POST /api/v1/datasets/upload endpoint that allows

users to upload trading datasets. The endpoint includes:

- File size validation (max 100MB)

- Content type validation (CSV only)

- Automatic dataset parsing and storage

- Integration with MinIO for file storage

Closes #296

No. 6 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

No. 6 / 6 - git-commit-standards - REICHHART Damien - 2026-01-18

af://n233

	Git Commit Standards
	Table of Contents
	Commit Message Format
	Format Rules

	Commit Types
	Type Selection Guidelines

	Scopes
	Standard Scopes
	Application Scopes
	Package Scopes
	Infrastructure Scopes
	Other Scopes

	Scope Selection Guidelines

	Message Body
	Body Format

	Breaking Changes
	Format 1: Footer
	Format 2: Type Suffix

	Examples
	Complex Example with Body

